
A little guide to building Large 
Language Models in 2024

thomas@huggingface.co



Website: https://thomwolf.io
E-Mail: thomas@huggingface.co
Twitter: @thom_wolf
LinkedIn: @thom-wolf

CSO and Co-founder of Hugging Face

Created HuggingFace Transformers and Datasets libraries.

Exploring Open-science in research in AI/ML, trying to lower 
the gap between academia and industrial labs through projects 
like the BLOOM/BigScience Workshop

Co-wrote "Natural Language Processing with Transformers" 
(O'Reilly)

Push for lowering the access barrier in AI for researchers and 
practitioners

Hi!



● Quick overview of Hugging Face
● LLMs in 2024 at Hugging Face

○ data
○ training
○ evaluation
○ alignment
○ inference

● Closing notes

Plan of today



WTF is Hugging Face?



Open vs Closed Models
Open-source and closed models have different benefits that should be considered carefully for each use-case

Open-Source Closed / Proprietary 
Security Models can be self-hosted, data stays in your environment Models cannot be self-hosted. Data is sent outside your 

environment to vendor

Control The timing and nature of updates are controlled by you Updates and changes to performance can
happen without notice

Customization Full source code access to customize the model for your needs Limited ability to customize for your needs

Transparency Inspect code and data provides better auditability and 
understandability No ability to audit or understand performance

Cost Typical lower long term cost due to smaller model size Typically higher long term cost due to larger model size and 
proprietary premium

Latency Lower latency due to on premise and smaller model sizes Typically greater latency due to larger model sizes

Quality No single approach is best. Each use case will vary. Proprietary is typically closer to the frontier of performance.

Examples



Founded In
2016

170 
Employees

300K+
stars on Github

500K+
open source models

100K+
public data sets

1M+
daily downloads

700K+
daily visitors

30+
Libraries

Hugging Face: The home of open ML



Used everywhere in the AI world

Open source contributors

Hardware partners

Cloud partners

15,000+ startups and enterprises 

On-prem partners

Hugging Face



Integrated with the ML ecosystem

Model in 
production

100,000+ datasets 
on the hub

500,000+ models 
on the hub

No-code AutoML

Managed 
Inference on 

AWS, Azure and 
GCP

Hosted ML applications

HW-accelerated 
training & inference

Deploy
anywhere

Open Datasets

Open Models

Transformers

Accelerate

Optimum

Diffusers

Amazon
SageMaker

Hugging Face
on Azure

NVIDIA
DGX Cloud

Cloud Platforms

Google
 Cloud



Open-source Ecosystem



LLMs in 2024
at Hugging Face



I – Training:
❖ data preparation – datatrove
❖ efficient training techniques – nanotron
❖ evaluation – lighteval

II – Fine-tuning:
❖ RLHF – TRL

III – Inference:
❖ quantization – bitsandbytes
❖ deployment – Text Generation Inference

The workflow for LLMs



Training:
1. Data preparation



Often a lot of focus on models
architecture by participants

I – Training

https://nonint.com/2023/06/10/the
-it-in-ai-models-is-the-dataset/

http://www.youtube.com/watch?v=P8ijiLqfXP0
https://nonint.com/2023/06/10/the-it-in-ai-models-is-the-dataset/
https://nonint.com/2023/06/10/the-it-in-ai-models-is-the-dataset/


Yi: Open Foundation Models by 01.AI
https://arxiv.org/abs/2403.04652

I – Training

https://arxiv.org/abs/2403.04652


I – Data preparation:
★ Latest resources

○ A Survey on Data Selection for Language Models
https://arxiv.org/abs/2402.16827

○ Yi: Open Foundation Models by 01.AI
https://arxiv.org/abs/2403.04652

★ Recent dataset reports
○ Dolma (AllenAI): an Open Corpus of Three Trillion Tokens for Language 

Model Pretraining Research
https://arxiv.org/abs/2402.00159

○ RefinedWeb (Falcon): Outperforming Curated Corpora with Web Data, and 
Web Data Only
https://arxiv.org/abs/2306.01116

I – Training

https://arxiv.org/abs/2402.16827
https://arxiv.org/abs/2403.04652
https://arxiv.org/abs/2402.00159
https://arxiv.org/abs/2306.01116


Data preparation
★ LM training requires multiple stages:

○ pretraining
○ instruction-tuning
○ alignment
○ in-context learning
○ task-specific fine-tuning

★ each training stage has different goals
★ data selection methods will use different 

mechanisms



Data preparation
Pretraining stage:
★ Goal: train a general-purpose model – maximal coverage
★ Requires: train on massive quantities of text, at least 1 

trillion of tokens nowadays
★ Challenges:

○ maximizing diversity and coverage
○ maximising quality, robustness
○ data quality evaluation: how to measure data quality 

at the billion tokens scale



Data preparation



Data preparation



Data preparation



Data sources
★ Very large (> 100B tokens):

○ Common crawl: everyone starts from here
○ Code: Github and Software Heritage

★ Curated:
○ Wikipedia
○ Books: public-domain vs. copyrighted

★ More recent trends
○ Synthetic data

Data sources



★ A synthetic dataset of 30M
samples

★ generated by Mixtral-8x7B-Instruct-v0.1
★ 8 splits:

○ various sources for seed samples:
Stanford, OpenStax and
KhanAcademy, webdata, instruction-tuning 
datasets

○ model is asked to generate content

Synthetic data: Cosmopedia v0.1 🛰



Cosmopedia v0.1 🛰



★ over 3B files in 658 programming and markup 
languages

★ created as part of the BigCode Project
pre-training dataset for Code LLMs

★ Derived from the Software Heritage archive:
largest public archive of software source code

Code data: StarCoder 2 and The Stack v2 💫



Coming soon….

webdata: FineWeb



Language filtering



heuristics

Quality filtering heuristics



★ Advantages
○ controlled
○ robust
○ rather clear priors

★ Drawbacks
○ rely entirely on surface level
○ danger of removing too much
○ hyper-parameter tuning

Quality filtering heuristics



Given a set of examples of good/bad documents:
★ classifier-based quality filtering:

fastText classification with an n-gram size of 2
★ perplexity based filtering:

 5-gram Kneser-Ney model on Wikipedia

Filter based on a threshold

Allow for more “quality/content based filtering” but harder to 
estimate the impact of the training documents.
May introduce unwanted “bias”

Quality filtering – ML filtering



★ Taking care of domains specificities
○ important to inspect the effect on domain specific data
○ extract 10 documents per domains (e.g. top urls)
○ manually inspect the results
○ craft domain specific filters/hyper-parameters
○ same for multiple languages

★ Deterministic vs. stochastic selection
○ hard threshold are strong decision points
○ stochastic smoothing of rules

Notes on data filtering



Reasoning: a lot of duplicate/near duplicate documents in large 
scale dumps (internet/github…) 
★ increases the distribution density around those areas
★ duplicated data point have more chance of being memorized 

(Carlini et al. (2023))
★ filtering out duplicates reduce training time
★ reducing duplication improve accuracy on downstream tasks 

(Lee et al., 2022a; Tirumala et al., 2023)

Data deduplication



★ methods:
○ Fuzzy:

■ BLOOM filters (hashing and fixed size vector)
■ MinHash (hashing and sorting)

○ Exact
■ Exact substring with suffix array
■ Sentence dedup

★ time/memory consumption
○ MinHash offers a good trade–off of speed/memory with 

more control than BLOOM filters

★ counter intuitive results
○ more deduplication may lead to keeping only bad data 

Data deduplication



Shuffle:
➜ Important!

Tokenizers – some good practices:
★ Sample quite widely in your dataset (donʼt overfit to a subset)
★ For math: be careful of numbers – either split digits or add them 

manually
★ For code: be careful of spaces – handle them well to group them
★ Byte-level BPE is a good standard – Byte fallback is good as well

Scaling tokenization:
★ Tokenization of trillions token can be non negligible

○ tokenize dynamically during training
○ parallelize pretokenization in small data sub-sets

Preparing the data for training



1. Small models trainings: train 1-2B size models on 30GT

★ Use a set of “high-signal” benchmarks (in NLP):
○ commonsenseqa
○ hellaswag
○ openbookqa
○ piqa

★ High-signal?
○ monotonicity: monotonically increasing during training
○ low variance:

■ when comparing two known reference datasets (e.g. The Pile versus C4)
■ when comparing with various sub-parts of data and seeds
■ above random baseline

★ Tricky details to maximize signal:
○ Small models like “normalized loglikelihood” better
○ Larger models like “letter answers” better

How to evaluate data quality

○ siqa
○ winogrande
○ arc
○ mmlu



2. Manual data inspection
★ Inspect 10 documents for your top 

domains/URLs
★ Inspect at various stage until post 

tokenization
★ Inspect kepts and discarded 

documents
★ Search tools in the dataset

3. Maps and clustering
★ https://github.com/huggingface/text-

clustering

4. Uncommon: training a tokenizer and 
inspect the top/last/longest tokens :)

How to evaluate data quality

https://github.com/huggingface/text-clustering
https://github.com/huggingface/text-clustering


Quick intro

datatrove



★ Started as an open reproduction of the RefinedWeb corpus
★ Ended up in a fully-fledged lightweight library for processing, 

filter and deduplicate text data at a very large scale.
★ Provides prebuilt commonly used processing blocks with a 

framework to easily add custom functionality.
★ Full python
★ Local, remote and other file systems are supported through 

fsspec.
★ Scaled to 20k+ nodes on SLURM

datatrove



Quick intro

lighteval



★ Lightweight LLM evaluation suite
★ Allow to evaluate models with 3D parallelism
★ Custom evals and prompt explorations
★ Push to hub/WandB/tensorboard

lighteval



Training:
2. Modeling



Training LLM: the essential elements
★ size/efficiency

○ parallelism
○ asynchronicity
○ kernel merging
○ attention

★ instabilities
○ stable training recipes

★ capacity
○ mixture of experts
○ mamba

Training the model



★ 4D Parallelism:
○ Data Parallelism
○ Tensor Parallelism
○ Pipeline Parallelism
○ Sequence Parallelism

When the model is too big:
Parallelism



★ 4D Parallelism:
○ Data Parallelism

■ usually work out-of-the-box
● just need to be careful with 

dataloading
■ challenges:

● compute efficiency for gradient 
all-reduce

● training efficiency of batch-size
○ Tensor Parallelism
○ Pipeline Parallelism
○ Sequence Parallelism

When the model is too big:
Parallelism



★ 4D Parallelism:
○ Data Parallelism
○ Tensor Parallelism

■ Re-write model code
■ Combine collumn/row slicing

to reduce sync points
○ Pipeline Parallelism
○ Sequence Parallelism

When the model is too big:
Parallelism



★ 4D Parallelism:
○ Data Parallelism
○ Tensor Parallelism

■ Re-write model code
■ Combine collumn/row slicing

to reduce sync points
○ Pipeline Parallelism
○ Sequence Parallelism

When the model is too big:
Parallelism



★ 4D Parallelism:
○ Data Parallelism
○ Tensor Parallelism
○ Pipeline Parallelism

■ Groupe sub-parts of the network
■ Challenge to keep all GPU busy

○ Sequence Parallelism

When the model is too big:
Parallelism



★ 4D Parallelism:
○ Data Parallelism
○ Tensor Parallelism
○ Pipeline Parallelism

■ Groupe sub-parts of the network
■ Challenge to keep all GPU busy

○ Sequence Parallelism

When the model is too big:
Parallelism



★ 4D Parallelism:
○ Data Parallelism
○ Tensor Parallelism
○ Pipeline Parallelism
○ Sequence Parallelism

■ Add another parallelism
■ Be careful: another

“sequence parallelism” exists: “ring attention” (also interesting)
■ Usually only interesting during training

When the model is too big:
Parallelism



★ References:
○ Breadth-First Pipeline Parallelism

https://arxiv.org/abs/2211.05953
○ Reducing Activation 

Recomputation in Large 
Transformer Models
https://arxiv.org/abs/2205.05198

○ Sequence Parallelism: Long 
Sequence Training from System 
Perspective
https://arxiv.org/abs/2105.13120

When the model is too big:
Parallelism

https://arxiv.org/abs/2211.05953
https://arxiv.org/abs/2205.05198
https://arxiv.org/abs/2105.13120


★ Challenges when scaling to multiple GPUs
○ Synchronization between:

■ Multiple GPUs
■ CPU and GPUs

○ Example:
■ Data parallelism all_reduce

overlapping communication
and computation

When the model is too big: efficiency



Stop materializing
attention matrices!

Flash Attention



Flash attention V2:
★ reduce the number of non-matmul FLOP

(division, etc)
○ each non-matmul FLOP is 16× more 

expensive than a matmul FLOP
★ better parallelism (sequences)
★ causal masks
★ better work partitioning (blocks, wraps)

Flash Attention v2



★ Initialization
★ Stabilisation (see MuTransfer)
★ Learning rate: Cosine or not.
★ Scaling hyper-parameters results

References:
★ MiniCPM blog post
★ Tensor Programs V: Tuning Large Neural Networks via 

Zero-Shot Hyperparameter Transfer
https://arxiv.org/abs/2203.03466

★ Cerebras-GPT: Open Compute-Optimal Language 
Models Trained on the Cerebras Wafer-Scale Cluster
https://arxiv.org/abs/2304.03208

Stable training recipes

https://shengdinghu.notion.site/MiniCPM-Unveiling-the-Potential-of-End-side-Large-Language-Models-d4d3a8c426424654a4e80e42a711cb20
https://arxiv.org/abs/2203.03466
https://arxiv.org/abs/2304.03208


Recent developments
★ Mixture-of-Experts (MoE)

○ Efficient training
on GPUs with Block
Sparsity

Capacity and architectures



Recent developments: Mamba
➜ efficient and performant SSM
https://srush.github.io/annotated-mamba/hard.html

Capacity and architectures

https://srush.github.io/annotated-mamba/hard.html


Quick intro

nanotron



★ Minimalistic large language model 3D-parallelism training
★ Philosophy

○ Make it fast
○ Make it minimal
○ Make everything explicit instead of transparent

★ We support the following
○ 3D parallelism, including 1F1B pipeline engine
○ ZeRO-1 optimizer
○ FP32 gradient accumulation
○ Parameter tying/sharding

★ Architectures
○ Llama
○ Mamba
○ MoE

nanotron



★ RLHF in 2024:
○ Align the modelʼs outputs with humanʼs preferences
○ hard to design reward functions for RL

Alignment



★ RLFH in 2024: PPO
🤯 results are incredible 
❌ implementation is complicated 
❌ GPU memory (fit 4 models) 🤯

Alignment



★ RLFH in 2024: DPO
✅ results are great
✅ Implementation is easy
✅ Fits in GPU memory well (2 models)

Alignment



★ RLFH in 2024: Is PPO/on-policy RL out yet?

Alignment



★ Quantization:
○ Full quantization for inference: GPTQ/GGML/NF4

https://arxiv.org/abs/2210.17323
Comparison of all three technics

○ AutoGPTQ
○ lama.cpp

★ Speculative Decoding
○ Use a small and large model in parallel
○ Medusa: https://arxiv.org/abs/2401.10774

★ Compiling and CUDA graphs
○ Accelerating Generative AI with PyTorch II: GPT, Fast

Inference

https://arxiv.org/abs/2210.17323
https://towardsdatascience.com/quantize-llama-models-with-ggml-and-llama-cpp-3612dfbcc172
https://github.com/AutoGPTQ/AutoGPTQ
https://github.com/ggerganov/llama.cpp
https://arxiv.org/abs/2401.10774
https://pytorch.org/blog/accelerating-generative-ai-2/


Final step!



Thank you!

Questions ?



Commercial solutions

Hardware
Specialized hardware optimized for production

Models
500k+ open models Datasets

90k+ open datasets

ML Libraries
Transformers, Tokenizers, Autotrain 

and many more free libraries and 
tools

Spaces
Build, host, and share your ML applications using Spaces in just a few minutes. 

Get started with free compute and upgrade easily as needed.

Expert acceleration 
program

World-class experts to support 
your ML team reach impact

Inference endpoints
Deploy and call your models as APIs in a few clicks

Enterprise Hub
Private and securely hosting and tooling for enterprise collaboration on models, datasets and compute 1

2


